An Open Reply to “Crossing the Imaginary Line” – Initial Thoughts

My professional friend, David Sedlak has recently published an editorial on “Crossing the Imaginary Line” in Environmental Science & Technology – a highly reputed journal of which he is editor in chief.  My interpretation of the gist of Professor Sedlak’s argument is that when environmental engineering & science researchers, through their scholarship, uncover significant information that merits public attention, they should work through governmental bodies and non-governmental entities such that these latter organizations can take action to effect change.  Doing otherwise, such as going directly to media, according to Sedlak is risky because “an idealistic researcher might just step over the imaginary line that separates the dispassionate researcher from the environmental activist. “  This editorial is provoking discussion in the environmental engineering community, including amongst students as reflected in this student blog.

I would not encourage junior faculty to engage in direct advocacy to the media before establishing a strong record in traditional scholarship, teaching and outreach. However once established, I do not share Professor Sedlak’s view that going to the media is beyond an imaginary line.

Certainly it would be preferable for researchers to use conventional government agencies and non-governmental organizations as “force multipliers” to effect change.  However there can be circumstances where such routes are either non-existent, or perhaps are clogged with inertia or active hostility to action based on well founded data and analyses.  More and more this appears to have been the case in Flint, Michigan

Many of us came into this profession (including myself) because we saw it as a way to have a rewarding career while benefiting people and the environment. There are great examples of environmental engineering and science researchers taking their knowledge from the ivory tower into the public sphere:

Clearly as academics we (are at least perceived by some to) have a privileged role in society.  According to Vesilind, ethical systems derive from moral principles.  The three key moral frameworks involved in engineering, which are combined in what we do, are duty-based (deontological), utilitarian, and virtue-based.  Deontological principles, deriving from Kant, are essentially statements of the golden rule.  Utilitarian principles (the greatest good for the greatest number) underly much of engineering decision making, however we recognize that they must be constrained by the deontological principles. Virtue concepts refer to the traits inherent in persons.

A key source for engineering ethical concepts is the American Society of Civil Engineers, particularly Canon 1, which states:

“Engineers shall hold paramount [emphasis added]the safety, health and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of their professional duties. “

This canon, which should hold equally to the academic as the practicioner tells us that our first duty is to the public.

While some may be focused on developing scholarship in the realm of fundamental research, others in our field are interested in advancing and applying knowledge that maintains and improves public health and the environment. In an ideal world, university research would be immediately used by responsible government entities to effect change.  However all who have been in the field for some time can cite examples where such avenues have been imperfect. We should not shy from the necessity of applying the principle of Canon 1 when it becomes necessary.

As human beings if we witness a mugging on the street, we would perhaps first seek to call the police.  However if they don’t respond in time, we would be morally justified in intervening to stop the crime and perhaps detain the perpetrator.  

When environmental researchers have data to ascertain the likely presence of environmental damage, they should perhaps first seek to involve competent authorities or advocacy organizations.  But it could be perceived as in accordance with the duties inherent in Canon 1 if, when they find such authorities or organizations to be absent or perhaps even ineffectual, they make their findings known to the public directly.  This should not, in my opinion, be regarded as crossing an imaginary line.

Clearly going directly to the public may effect benefits against the environmental damage, but may accrue personal risks to the individuals going this route.  These risks should not include the opprobrium of their professional communities when the message is based on sound factual information and reasoning.  We do not do either our profession or the environment justice by saying that public messaging must wait for community consensus.  There is equal room in the big tent of environmental engineering and science researchers for those who wish to focus on fundamental issues, and for those who are interested in using the results of their knowledge advances to effect improvement to the environment and human health — and NEITHER should be denigrated.


Thoughts on Flint, Michigan

The water crisis in Flint, Michigan had once again highlighted the fact that water distribution systems, including the portion within individual buildings (which are generally the responsibility of property owners), are not inert.  In the US, water utilities are obliged to produce water that is acceptable for drinking (and other uses) at the consumers taps

Without getting into the politics, as someone who has done a lot of work in water treatment, and water chemistry, I have a number of questions:

  1. A basic measure of the stability of water is the corrosion (or stability) index.  I have not seen basic data on the raw water basic chemistry of the Flint River, nor the chemistry of the major species (alkalinity, hardness, pH, sulfate, chlorides) after treatment.  General Motors apparently went off the Flint Water supply due to high chloride levels (  For quite some time, the concept of stability indices (Langelier, Ryznar, Larson Ratio, etc) have been well known as tools to assess the aggressiveness (corrosivity) of a water.  For example, see this paper from 1980 (Millette, James R., Arthur F. Hammonds, Michael F. Pansing, Edward C. Hansen, and Patrick J. Clark. 1980. “Aggressive Water: Assessing the Extent of the Problem”. Journal (american Water Works Association) 72 (5). American Water Works Association: 262–66.  There is no single universal tool as pointed out by Marc Edwards in his important review in 2001(McNeill, Laurie S., and Marc Edwards. 2001. “Iron Pipe Corrosion in Distribution Systems.”  Journal of the American Water Works Association 93 (7):88-100.) 
  2. It seems clear now that as early as March 2015, a consultants report was issued in which the addition of corrosion control chemicals was advised (  

    The full report from Veolia is online and has a suite of important and prioritized recommendations to take.  The response of this in terms of decisions to take or not to take action will be interesting to watch. However the focus of this report was NOT corrosion control, as exemplified in this quote: 

    • “The primary focus of this study was to assure compliance with the TTHM limits. That is not the only problem facing the city and its customers though. Many people are frustrated and naturally concerned by the discoloration of the water with what primarily appears to be iron from the old unlined cast iron pipes. “

  3. In the absence of corrosion control, one would expect that the solubilization of iron would cause a decrease in the chlorine residual.  Rhodes Trussell reviews the important relationships between corrosion, residual, and disinfection byproduct formation (  Either no action was taken if the chlorine residual sampled in the distribution system was noticed to drop from previous levels, or the chlorine dose was boosted, and potentially resulted in increased disinfection byproduct formation.  Given that Flint had apparent concerns about compliance with TTHM levels, they may have been reluctant to increase residual.  It would be interesting to see lab data sheets for chlorine residual measurements in the distribution system before and after the switchover to Flint River water.
  4. If the chlorine residual dropped, then microbial levels in the distribution system could have increased.  Some, but not many, utilities measure heterotrophic plate count bacteria (HPC) in the distribution system.  I would expect their levels to have increased with a drop in residual.
  5. While the connection between the elevation of the Legionella case count subsequent to the switchover is possible, a direct connection may never be known because of the absence of samples from many of the clinical cases.  Frequently a genetic match between clinical isolates and environmental isolates is deemed necessary to make a definitive connection.

I will post subsequent thoughts and comments as they develop.